skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smerdon, Jason_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer. 
    more » « less
  2. Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the last millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the last millennium with volcanic stratospheric sulfur injections (VSSIs) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first posteruption winter. Examining the 13 events that show cold posteruption anomalies, we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large, low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of posteruption Eurasian winter warming. Our findings, covering the entire last millennium, confirm the findings of most recent modeling studies and offer important new evidence that large, low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia. 
    more » « less